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Abstract. We calculate the quark number susceptibility in the deconfined phase of QCD using the hard
thermal loop (HTL) approximation for the quark propagator and quark–meson vertices. This improved
perturbation theory takes into account important medium effects such as thermal quark masses and
Landau damping in the quark–gluon plasma. We explicitly show that the Landau damping part in the
quark propagator for space-like quark momenta does not contribute to the quark number susceptibility
due to the quark number conservation. We find that the quark number susceptibility only due to the
collective quark modes deviates from the free one around the critical temperature but approaches free
results in the infinite temperature limit. The results are in conformity with recent lattice calculations.

In recent years substantial experimental and theoretical
efforts have been undertaken to investigate the versatile
physics issues involved in ultra-relativistic heavy-ion col-
lisions, i.e., collisions of atomic nuclei in which the center-
of-mass energy per nucleon is much larger than the nu-
cleon rest mass. The principal goal of this initiative is to
explore the phase structure of the underlying theory of
strong interactions – quantum chromodynamics (QCD) –
by creating in the laboratory a new state of matter, the
so-called quark–gluon plasma (QGP). This new state of
matter is predicted to exist under extreme conditions like
at high temperatures and/or densities, when a phase tran-
sition takes place from a hadronic to a deconfined state of
quarks and gluons [1]. Such information has essentially
been confirmed by numerical lattice QCD calculations [2]
at finite temperature, which show a rapid increase in en-
ergy density and entropy density as a function of tem-
perature. Numerical solutions of QCD also suggest that
the critical temperature is about 170MeV [3] and provide
information on the equation of state [4].

The various measurements taken at CERN SPS within
the Lead Beam Programme do lead to strong “circumstan-
tial evidence” for the formation of the QGP [5,6]. The
evidence is circumstantial as any direct formation of the
QGP cannot be identified. Only by some noble indirect
diagnostic probes like the suppression of the J/Ψ parti-
cle, the enhanced production of strange particles, espe-
cially strange antibaryons, excess production of photons
and dileptons, the formation of disoriented chiral conden-
sates, etc. this discovery can be achieved. A great amount
of theoretical study has also been devoted over the last
two decades in favour of these well accepted probes of a
deconfinement (QGP) phase.

Recently screening and fluctuation of conserved quan-
tities have been considered as important and relevant
probes of the QGP formation in heavy-ion collisions [7–
10]. In the confined/chirally broken phase charges are as-
sociated with the hadrons in integer units whereas in the
deconfined/chirally restored phase they are associated
with the quarks in fractional units which could lead to
charge fluctuations which are different in the two phases
[7,10]. The fluctuations can generally be related to the as-
sociated susceptibilities [7,11]. The quark number suscep-
tibility is associated with the number fluctuation which
measures the response of the number density with in-
finitesimal change of the quark chemical potential. Hence
the quark number susceptibility can be related to charge
fluctuations [10] and is therefore of direct experimental
relevance. The quark number susceptibility has been in-
vestigated in lattice QCD simulations [12] which showed
that it is zero at low temperature and increases suddenly
to non-zero values across the deconfinement phase transi-
tion. At high temperature QCD it has been analysed [13]
and one has shown non-perturbative temperature effects
at next-to-leading order. Recently, this has been discussed
[14] in connection with the role of the fluctuations during
the dense stages of the collision with the aim to exploit
the electromagnetic probes with the hadronic probes. A
very recent lattice simulation [15] has verified a new re-
lation between susceptibilities and screening masses and
explains that the non-perturbative phenomena are closely
connected with deviations from the weak coupling limit
or bare perturbation theory, indicating the need to re-
sum the weak coupling series. The purpose of the present
calculation is to investigate the quark number suscep-
tibility within the HTL resummed perturbation theory
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which incorporates non-perturbative effects such as effec-
tive masses of the collective quark modes (quark and plas-
mino modes in the medium originating from the poles of
the HTL propagator) and Landau damping for space-like
quark momenta, reflecting the physical picture of the QGP
as a gas of quasiparticles. As we will see below, the quark
number susceptibility obtained in HTL approximation is
in agreement with recent lattice [15] observations.

1 Fluctuation and susceptibility

Let Oα be a Heisenberg operator. In a static and uniform
external field Fα, the (induced) expectation value of the
operator Oα (0,x) is written [11] as

φα ≡ 〈Oα (0,x)〉F =
Tr
[Oα (0,x) e−β(H+Hex)

]
Tr
[
e−β(H+Hex)

]
=

1
V

∫
d3x 〈Oα (0,x)〉 , (1)

where translational invariance is assumed and Hex is given
by

Hex = −
∑
α

∫
d3xOα (0,x)Fα . (2)

The (static) susceptibility χαβ is defined as

χασ(T ) =
∂φα

∂Fσ

∣∣∣∣
F=0

= β
∫

d3x 〈Oα (0,x)Oσ (0,0)〉 , (3)

assuming no broken symmetry

〈Oα (0,x)〉 = 〈Oσ (0,0)〉 = 0.

〈Oα(0,x)Oσ(0,0)〉 is the two point correlation function
with operators evaluated at equal times.

2 Quark number susceptibility

The quark number susceptibility is the measure of the
response of the quark number density with infinitesimal
changes in the quark chemical potential, µq +δµq. In such
a situation the external field, Fα, in (2) can be identified
as the change in quark chemical potential µq and the op-
erator Oα: j0 = qγ0q, where jµ(t,x) = qγµq is the vector
meson current. Then the quark number susceptibility for
a given quark flavour follows from (3);

χq(T ) =
∂ρq

∂µq

∣∣∣∣
µq=0

= β
∫

d3x 〈j0(0,x)j0(0,0)〉

= β
∫

d3xS00(0,x), (4)

Fig. 1. The self-energy diagram for free quarks

where S00(0,x) is the time–time component of the vec-
tor meson correlator Sµν(t,x) = 〈jµ(t,x)jν(0,0)〉 and the
number density can be written as

ρq =
1
V

Tr
[Nqe−β(H−µqNq)

]
Tr
[
e−β(H−µqNq)

] =
〈Nq〉
V

= − 1
V

∂Ω

∂µq
, (5)

with the quark number operator, Nq =
∫
j0(t,x)d3x, and

Ω = −T lnZ is the thermodynamic potential and Z the
partition function of a quark–antiquark gas.

Taking the Fourier transform of S00(0,x), it can be
shown that [11]

χq (T ) = lim
p→0

β

∫ +∞

−∞

dω
2π
S00 (ω, p) . (6)

Using the fluctuation-dissipation theorem [16], it can fur-
ther be shown that [11]

χq (T ) = β
∫ +∞

−∞

dω
2π

−2
1 − e−βω

ImΠ00 (ω, 0) , (7)

where

Πµν(ω,p) = FT
(
−iθ(t)

〈
[jµ(t,x), jν(0,0)]−

〉)
,

and FT stands for Fourier transformation.

2.1 Free case

To lowest order in perturbation theory one has to evalu-
ate the time–time component of the self-energy diagram
shown in Fig. 1, where the internal quark lines represent
a bare quark propagator Sf (L) which can be expressed in
the helicity representation for the massless case by (L =
(l0, l), l = |l |) [17]

Sf (l0, l) =
γ0 − l̂.γ
2d+ (L)

+
γ0 + l̂.γ
2d− (L)

, (8)

with
d± (l0, l) = −l0 ± l. (9)

The corresponding spectral function is given by

ρf
± (l0, l) = δ (l0 ∓ l) . (10)

Now the time–time component of the vector meson
self-energy in Fig. 1 can be written as
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Π00 (P ) = NfNcT
∑
k0

∫
d3k

(2π)3
Tr
[
Sf (K) γ0Sf (Q) γ0] ,

(11)
where Q = P −K, and Nf and Nc are, respectively, the
number of quark flavours and colours.

Substituting the propagator (8) in (11), performing the
trace, and following the summation relation of [17], we
extract the imaginary part as

ImΠ00 (ω,p = 0) =

4NfNcπ
(
1 − eβω

) ∫ d3k

(2π)3

∫
dx
∫

dx′δ (ω − x− x′)

×nF (x)nF (x′) ρf
+ (x, k) ρf

− (x′, k) , (12)

where x and x′ are the energies of the internal quarks and
nF is the Fermi distribution function. Using (10) in (12),
we get

ImΠ00 (ω,p = 0) = (13)

4NcNfπ
(
1 − eβω

)
δ (ω)

∫
d3k

(2π)3
nF (k) (1 − nF (k)) .

Inserting (13) in (7), we obtain the quark number suscep-
tibility in lowest order perturbation theory [7,11]

χf
q (T ) = 4NfNcβ

∫
d3k

(2π)3
eβk

(1 + eβk)2
. (14)

Alternatively, considering the lowest order thermody-
namic potential of a quark–antiquark gas [18,19]

Ω = −2NfNcT

∫
d3k

(2π)3
[
βEk + ln

(
1 + e−β(Ek−µq)

)
+ ln

(
1 + e−β(Ek+µq)

)]
, (15)

one could arrive at the same expression using (4) and (5).
Due to the quark number conservation ImΠ(ω, 0), as

obtained in (13), is proportional to δ(ω). This leads to a
general relation between the quark number susceptibility
and the time–time component of the polarisation tensor
in the vector channel,

χf
q (T ) = −4NfNc

∫
d3k

(2π)3
dnF

dk
≡ −ReΠ00(0, 0)

≡ (µf
D)2, (16)

which provides a connection [11,14,18–20] to the electric
screening mass, µf

D. This relation is only valid in lowest
order in perturbation theory.

2.2 HTL case

Now we turn to the estimate of the quark number suscep-
tibility beyond the free quark approximation by invoking
the in-medium properties of quarks in a QGP. In the weak
coupling limit (g 
 1), a consistent method is to use the

HTL resummed quark propagators and HTL quark–meson
vertex if the quark momentum is soft (∼ gT ). Using this
improved perturbation theory at least to some extent non-
perturbative features of the QGP such as effective quark
masses and Landau damping are incorporated through the
effective quantities like quark propagators and the quark–
meson vertex.

Let us, however, note that we do not aim at a complete
leading order perturbative calculation. Rather we want to
study the influence of medium effects incorporated in the
HTL resummed quark propagator. Hence, we will use this
propagator for the entire momentum range instead of con-
sistently distinguishing between soft and hard momenta
[21]. Anyway, since this distinction is only possible in the
weak coupling limit, g 
 1, it cannot be used in our case,
in which we want to compare our results to QCD lattice
calculations. The approach considered here is in the same
spirit as the one for calculating meson correlators in the
QGP [22]. It should be noticed that our results are gauge
independent due to the gauge invariance of the HTL quark
propagator.

The HTL resummed quark propagator, S�(L), can be
obtained [17] from (8) by replacing d±(L):

D± (l0, l) = −l0±l +
m2

q

l

[
Q0

(
l0
l

)
∓Q1

(
l0
l

)]
, (17)

where the thermal quark mass is given by mq = g(T )T/
(61/2), and Qn(y) is the Legendre function of second kind.
The HTL vertex can be obtained [23] as

Γµ (P1, P2) = γµ +m2
qG

µνγν , (18)

with

Gµν (P1, P2) =
∫

dΩ
4π

RµRν

(R · P1)(R · P2)
= Gµν (−P1,−P2) , (19)

where R ≡ (−1, r) is a light-like four vector, R2 = 0. The
effective propagator and vertex are related via the Ward
identity.

The HTL spectral function reads [17]

ρ±(l0, l) =
l20 − l2
2m2

q

[δ(l0 − ω±) + δ(l0 + ω∓)]

+ β±(l0, l)Θ(l2 − l20), (20)

with

β±(l0, l) = −m
2
q

2
(±l0 − l)

×
{[
l(−l0 ± l) +m2

q

(
±1 − ±l0 − l

2l
ln
l + l0
l − l0

)]2

+
[
π

2
m2

q

±l0 − l
l

]2}−1

. (21)

Here the zeros ω±(l) of D±(L) describe the two branches
of the dispersion relation of collective quark modes in a
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Fig. 2a,b. The self-energy a and tadpole b diagrams for
quarks in the HTL approximation

thermal medium [17]. Furthermore the HTL resummed
quark propagator acquires a cut contribution below the
light cone (l20 < l2) as the quark self-energy has a non-
vanishing imaginary part, which can be related to Landau
damping for space-like quark momenta resulting from in-
teractions of valence quarks with gluons in the thermal
medium. In addition, an explicit temperature dependence
only enters through mq(T ) as well as through the strong
coupling constant, g2(T ) = 4παs(T ) with

αs(T ) =
12π

(33 − 2Nf ) ln (Q2/Λ2
0)
, (22)

where Λ0 = 200–300MeV. For the momentum scale Q
we take the energy of the lowest Matsubara mode Q =
2πT [24]. For checking the sensitivity of the susceptibility
to uncertainties in the coupling constant we will use also
Q = 4πT . It should also be noted that the HTL resummed
propagator is chirally symmetric in spite of the appearance
of an effective quark mass [17].

Now we need to calculate the imaginary part of the
time–time component of the self-energy diagrams given
in Fig. 2, in which blobs represent the effective quanti-
ties. The tadpole diagram in Fig. 2b is essential to satisfy
the transversality condition, PµΠ

µν(P ) = 0. As will be
seen below this has a very important effect on the quark
number susceptibility by partially compensating the cut
contribution in diagram Fig. 2a.

Now the time–time component of the self-energy in
diagram Fig. 2a can be written as

Π00
1 (P ) = NfNcT

×
∑
k0

∫
d3k

(2π)3
Tr
[
S� (K)Γ 0 (K − P,−K;P )

× S� (Q)Γ 0 (P −K,K;−P )] . (23)

The time component of the HTL vertex can be obtained
by carrying out the angular integration in (18) for p = 0:

Γ 0 (K − P,K;P ) =

(
1 − m2

q

p0k
δQ0

)
γ0 +

m2
q

p0k
δQ1k̂.γ,

(24)
where

δQn = Qn

(
k0
k

)
−Qn

(
k0 − p0
k

)
. (25)

Alternatively, Γ 0(P1, P2) can also be obtained from the
Ward identity PµΓ

µ(P1, P2;P ) = S�−1(P1) − S�−1(P2).
Now performing the traces in (23), we get

Π00
1 (p0,p = 0) = 2NfNcT (26)

×
∑
k0

∫
d3k

(2π)3

[
(a+ b)2

D+ (K)D−(Q)
+

(a− b)2
D− (K)D+ (Q)

]
,

where

a =

(
1 − m2

q

p0k
δQ0

)
, b =

m2
q

p0k
δQ1,

a± b = 1 − m2
q

p0k

{
Q0

(
k0
k

)(
1 ∓ k0

k

)

+Q0

(q0
k

)(
1 ± q0

k

)}
, (27)

where q0 = p0 − k0 and Qn (−y) = (−1)n+1
Qn (y) has

been used in (27). Following the summation formula of
[17] the imaginary part of (26) then can be written as

ImΠ00
1 (ω,p = 0) = NfNcπ

(
1 − eβω

)
×
∫

d3k

(2π)3

∫
dx
∫

dx′δ (ω − x− x′)nF (x)nF (x′)

×
[
4
(
1 − x+ x′

ω

)2

ρ+ (x, k) ρ− (x′, k)

− 4
m2

q

ω2k
Θ
(
k2 − x2) (28)

×
{
1
2

(
1 − x

k

)
ρ− (x′, k) +

1
2

(
1 +

x

k

)
ρ+ (x′, k)

}]
.

The contribution of the time–time component of the tad-
pole diagram in Fig. 2b can be written as

Π00
2 (P ) = NfNcT

∑
k0

∫
d3k

(2π)3

×Tr
[
S� (K)Γ 00 (−K,K;−P, P )] , (29)

where the effective HTL four point function can be ob-
tained from the relation

PµΓ
µν(−K,K;−P, P ) = Γ ν(K − P,−K;P )

−Γ ν(−K − P,K;P ). (30)

At p = 0 the four point function is obtained as

Γ 00 (−K,K;−P, P ) (31)

= −m
2
q

p20k
(δQ0 + δQ′

0) γ
0 +

m2
q

p20k
(δQ1 + δQ′

1) k̂ · γ,
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with

δQ′
n = Qn

(
k0
k

)
−Qn

(
k0 + p0
k

)
. (32)

Proceeding exactly the same way as before, we get the
imaginary part of the tadpole:

ImΠ00
2 (ω,p = 0) = NfNcπ

(
1 − eβω

)
×
∫

d3k

(2π)3

∫
dx
∫

dx′δ (ω − x− x′)nF (x)nF (x′)

× 4
m2

q

ω2k
Θ
(
k2 − x2) (33)

×
[
1
2

(
1 − x

k

)
ρ− (x′, k) +

1
2

(
1 +

x

k

)
ρ+ (x′, k)

]
.

It can be seen that the tadpole contribution compensates
the second term of (28) and the total contribution becomes

ImΠ00 (ω,p = 0) = 4NfNcπ
(
1 − eβω

)
×
∫

d3k

(2π)3

∫
dx
∫

dx′δ (ω − x− x′)nF (x)nF (x′)

×
(
1 − x+ x′

ω

)2

ρ+ (x, k) ρ− (x′, k) . (34)

Now combining (20), (34) and (7), the quark number sus-
ceptibility in HTL approximation is obtained as

χh
q (T ) = 4NfNcβ

×
∫

d3k

(2π)3

[(
ω2

+(k) − k2
)2

4m4
q

nF(ω+) (1 − nF(ω+))

+

(
ω2

−(k) − k2
)2

4m4
q

nF(ω−) (1 − nF(ω−))

]
. (35)

Since the quark number susceptibility is constructed from
two quark propagators, in general they should receive
pole–pole, pole–cut and cut–cut contributions [17]. How-
ever, according to (35) it has only pole–pole contributions
from the two collective quark modes (quark and plasmino
modes in the medium). The cut contributions (pole–cut
and cut–cut) due to space-like quark momenta (Landau
damping) do not contribute because of the number con-
servation in the system. In the high temperature limit, the
second term due to the plasmino mode decouples from the
medium whereas the first term reduces to the free suscep-
tibility given in (16).

We now discuss our results for the quark number sus-
ceptibility. In Fig. 3 we present the temperature depen-
dence of the quark number susceptibility χq(T ) in units
of NfT

2, the free field theory susceptibility. We have used
the temperature dependence of the strong coupling con-
stant as given in (22) for two different ratios of Tc to Λ0
and two different values for Q. The choice Tc/Λ0 = 0.49
[25] has been used in the lattice calculations of [15]. We
observe that the quark number susceptibility does not de-
pend strongly on the choice of the coupling constant. (For

Fig. 3. χq(T )/NfT 2 as a function of T/Tc in the HTL ap-
proximation. Nf is the number of quark flavours and Tc is
the critical temperature for the deconfined phase transition.
For the solid curves (22) with Tc/Λ0 = 0.49 [25] and for the
dashed curves Λ0 = 200MeV and Tc = 170MeV have been
used. The lower curves correspond to Q = 2πT and the upper
ones to Q = 4πT

Tc = 170MeV and Λ0 = 300MeV the susceptibility de-
creases by about 5% compared to the dashed curves.) The
susceptibility increases with the increase of temperature.
It is interesting to note that the result lies significantly
below the free result even at T = 5Tc and the devia-
tion is 25–40%. This deviation agrees with the recent lat-
tice observation [15] along with a slow approach to the
free quark susceptibility. This result is reminiscent of the
fact that the quark number susceptibility in HTL approx-
imation contains non-perturbative information about the
QGP phase at high temperature. In the infinite temper-
ature limit, the HTL result exactly reproduces the free
quark susceptibility. This can clearly be seen in Fig. 4 be-
low.

In Fig. 4 we display the quark number susceptibility
in units of NfT

2 as function of mq/T using (22) with
Λ0 = 300MeV and Q = 2πT . As expected for small
thermal quark masses, the HTL susceptibility begins with
the free field theory result, NfT

2, with a flat tangent at
mq = 0 and a quadratic dependence on mq. With the
increase of the mass the susceptibility starts decreasing
monotonically. For low values of the thermal quark mass,
the susceptibility is large due to the fact that it is rela-
tively easy to create an additional quark or antiquark. On
the other hand, if quarks acquire thermal masses in the
medium, the susceptibility decreases, which could qualita-
tively be understood as an effect of the Boltzmann factor.

3 Conclusion

We have calculated the quark number susceptibility in
the HTL approximation which incorporates in-medium ef-
fects of the QGP phase such as quark masses and Landau
damping through the HTL resummed propagators and
the HTL quark–meson vertex in the vector meson chan-
nel. We have discussed the influence of the various non-
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Fig. 4. χq(T )/NfT 2 as a function of mq/T for free quarks
(dashed line) and in the HTL approximation (solid line). mq

is the thermal quark mass

perturbative effects on the quark number susceptibility in
the deconfined phase. The Landau damping contribution
due to space-like quark momenta drops out because of the
quark number conservation in the system. Technically this
occurs partly due to a cancellation of the two diagrams in
Fig. 2 containing HTL resummed quark–meson vertices,
and partly due to kinematical reasons in (34).

We find that the quark number susceptibility is signif-
icantly smaller than the free susceptibility for moderately
high temperatures. Our results are in good agreement with
recent lattice calculations. Besides the on-set of confine-
ment and chiral symmetry breaking close to Tc, HTL ef-
fects may explain the lattice results similar as in the case
of the free energy [26] but in contrast to the meson correla-
tion functions [22]. Since the quark number susceptibility
is related to charge fluctuations, it could be an interesting
observable in heavy-ion collisions.
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Note added in proof: After completing our investiga-
tion a preprint by Blaizot, Iancu, and Rebhan appeared on
the same topic [27]. They computed the quark number sus-
ceptibility from the thermodynamic potential, obtained in
an approximately self-consistent resummation of HTLs.
However, they do not use the effective HTL resummed
vertices, which plays an important role by partly com-
pensating the Landau damping contribution in the quark
number susceptibility as shown in our investigation. As
in the present paper, they found results similar to lattice
data.


